GEOCHEMISTRY

"Radiogenic Isotope Dating System"

"Rb-Sr Scheme"

Shekhar Assistant Professor Department of Geology Patna Science College Patna University *E-mail: sharan.srk@gmail.com*

INTRODUCTION

- Each age-dating scheme involves precise measurement of the concentration of an isotope.
- The decay scheme thus selected to obtain the ages which is less than a few half-lives of the radioactive decay.
- If the radioactive decay has advanced too far, the resolution of the method deteriorates.
- Radioactive decay is a <u>statistical process</u>.

(*For further detail refer to the radioactivity lecture.)

RADIOGENIC ISOTOPES IN GEOCHEMISTRY

Geochronology

Petrogenesis

Used to determine the ages of the rock & minerals

Used to determine the geological processes

Decay constants and half-lives of some naturally occurring, radioactive isotopes commonly used in geochronology

Parent Isotope	Daughter Isotope	Decay Constant (<i>10⁻¹⁰ yr⁻¹</i>)	Half-life (Ga)
⁴⁰ K	⁴⁰ Ar, ⁴⁰ Ca	5.543	1.28
⁸⁷ Rb	⁸⁷ Sr	0.1420	48.8
¹³⁸ La	¹³⁸ <i>Ce</i>	0.0267	259
¹⁴⁷ Sm	^{143}Nd	0.0654	106
¹⁷⁶ Lu	¹⁷⁶ Hf	0.194	36
¹⁸⁷ Re	¹⁸⁷ O s	0.164	42.3
²³² <i>Th</i>	²⁰⁸ Pb	0.4948	14.01
^{235}U	²⁰⁷ Pb	9.8485	0.707
^{238}U	²⁰⁶ Pb	1.5513	4.468

<u>Rb-Sr system</u>

- Rubidium (⁸⁷Rb) decays by β -particle emission to radiogenic strontium (⁸⁷Sr).
- The non-radiogenic, stable isotope ${}^{86}Sr$ has approximately the same abundance as the radiogenic product ${}^{87}Sr$, and is chosen for normalization.
- In a magmatic rock, the isotopic ratio ⁸⁷Sr/⁸⁶Sr is uniform, while the proportion of element Rb & Sr varies

The total number of ⁸⁷Sr atoms in a rock which has been a closed system for 't' years is given by the equation

$$\left(\frac{{}^{87}\mathrm{Sr}}{{}^{86}\mathrm{Sr}}\right)_{\mathrm{P}} = \left(\frac{{}^{87}\mathrm{Sr}}{{}^{86}\mathrm{Sr}}\right)_{\mathrm{I}} + \left(\frac{{}^{87}\mathrm{Rb}}{{}^{86}\mathrm{Sr}}\right)_{\mathrm{p}} \left(e^{\lambda t} - 1\right)$$

where,

 $({}^{87}Sr/{}^{86}Sr)_{\rm P}$ – total number of atoms of ${}^{87}Sr$ present today $({}^{87}Sr/{}^{86}Sr)_{\rm I}$ – number of atoms of ${}^{87}Sr$ present when the sample was first formed $({}^{87}Rb/{}^{86}Sr)_{\rm P}$ – number of atoms of ${}^{87}Rb$ present today

 λ – decay constant

t – age of the rock

*The decay equation applies only to a closed system, i.e., to rocks or minerals which have undergone no loss or addition of the parent or daughter isotope since they formed

Rb-Sr system

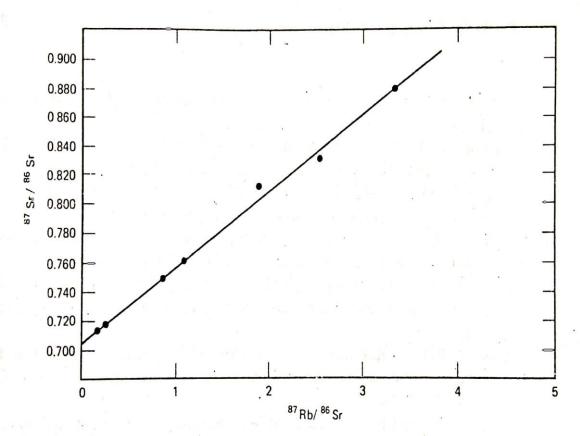
- The Rb–Sr method is well suited for dating very old events in Earth's history.
- It has been used to obtain the ages of meteorites and lunar samples, as well as some of the oldest rocks on Earth.
- The Rb–Sr and other methods of isotopic dating can be applied to whole rock samples or to individual minerals separated from the rock.

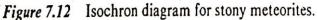
*A change is more likely in a small mineral grain than in the rock as a whole.

<u>Rb-Sr Isochron</u>

- An isochron diagram is a bivariate plot of measured parentdaughter isotope ratios for a suite of cogenetic samples. Where the sample suite defines a linear array, this is said to be an isochron and the slope of the line is proportional to the age of the sample suite.
- Decay equation can be compared with the equation of a straight line:

$$y = y' + mx$$


where,


y - dependent variable (given by ⁸⁷Sr/⁸⁶Sr) x – independent variable (given by ⁸⁷Rb/⁸⁶Sr) m – slope (represents age of the Earth

Rb-Sr Isochron

- Plotting

 isotopic ratio
 for several
 specimen from
 the same suite,
 we get a
 straight line.
- The slope of the line gives the age of the rock

The primordial ${}^{87}Sr/{}^{86}Sr$ value = 0.7009 The slope yields an age = 3740 Ma

Rb-Sr Isochron

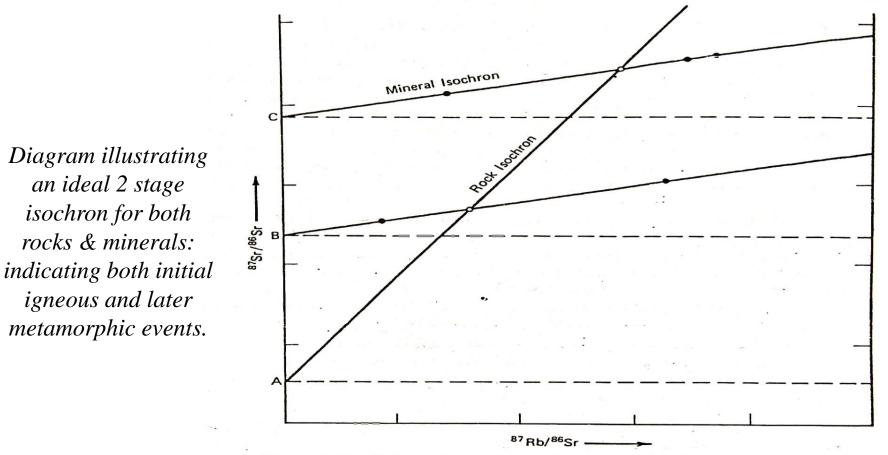


Figure 7.14 Schematic isochron diagram for whole rocks (open circles) from the same geologic system, and minerals (solid circles) comprising the whole rocks. The whole-rock isochron corresponds to the primary age, the mineral isochrons to the age of metamorphism. The initial ^{\$7}Sr/^{\$6}Sr for the whole rock is A, and ^{\$7}Sr/^{\$6}Sr in individual whole-rock specimens at the later time of metamorphism is denoted by B and C.

REFERENCES & FOR FURTHER STUDIES

- Lowrie, W., (2007): Fundamentals of Geophysics, Cambridge University Press
- Mason, B. and Moore, C.B., (1991): Introduction to Geochemistry, Wiley Eastern.
- White, W. M., (2015): Geochemistry, John Wiley & Sons, Ltd.