GEOCHEMISTRY

"Radiogenic Isotope Dating System"

"K-Ar Scheme"

Shekhar Assistant Professor Department of Geology Patna Science College Patna University *E-mail: sharan.srk@gmail.com*

INTRODUCTION

- Each age-dating scheme involves precise measurement of the concentration of an isotope.
- The decay scheme thus selected to obtain the ages which is less than a few half-lives of the radioactive decay.
- If the radioactive decay has advanced too far, the resolution of the method deteriorates.
- Radioactive decay is a <u>statistical process</u>. (*For further detail refer to the radioactivity lecture.)

RADIOGENIC ISOTOPES IN GEOCHEMISTRY

Geochronology

Petrogenesis

Used to determine the ages of the rock & minerals

Used to determine the geological processes

Decay constants and half-lives of some naturally occurring, radioactive isotopes commonly used in geochronology

Parent Isotope	Daughter Isotope	Decay Constant (<i>10⁻¹⁰ yr⁻¹</i>)	Half-life (Ga)
⁴⁰ K	⁴⁰ Ar	5.543	1.28
⁸⁷ Rb	⁸⁷ Sr	0.1420	48.8
¹³⁸ La	¹³⁸ <i>Ce</i>	0.0267	259
¹⁴⁷ Sm	^{143}Nd	0.0654	106
¹⁷⁶ Lu	¹⁷⁶ Hf	0.194	36
¹⁸⁷ Re	¹⁸⁷ O s	0.164	42.3
²³² Th	²⁰⁸ Pb	0.4948	14.01
^{235}U	²⁰⁷ Pb	9.8485	0.704
^{238}U	²⁰⁶ Pb	1.5513	4.468

K-Ar system

- The parent isotope, potassium, is common in rocks and minerals, while the daughter isotope, argon, is an inert gas that does not combine with other elements.
- K–Ar method used for dating lavas as young as a few million years to the older one.
- It decays in two different ways:

$${}^{40}K_{19} \longrightarrow {}^{40}Ca_{20} + \beta^{-}$$

$${}^{40}K_{19} + e \longrightarrow {}^{40}Ar_{18}$$

* Decay constant: $\lambda = \lambda_{Ar} + \lambda_{Ca}$

* β- particle decay is more common than electron capture.
*K-Ar decay scheme is used for age calculation instead of K-Ca decay scheme

The age of the rock is obtained from the equation:

$$\binom{40}{40} Ar \Big|_{P} = \left(\frac{\lambda_{Ar}}{\lambda_{Ar} + \lambda_{Ca}}\right)_{I} + \binom{40}{10} K \Big|_{P} \left(e^{\lambda t} - 1\right)$$

where,

 $\binom{40}{Ar}_{P}$ -- accumulated amount of the daughter product $\binom{40}{K}_{p}$ -- residual amount of the parent product $\left(\frac{\lambda_{Ar}}{\lambda_{Ar}+\lambda_{Ca}}\right)_{I}$ -- fraction of initial Potassium to Argon.

 λ – decay constant

t – age of the rock

K-Ar system

- The method works well on *young igneous rocks* that have not been heated since they formed.
- It cannot be used in *sedimentary rocks consisting of the detritus of older rocks*.
- Also, unsuccessful in *metamorphic rocks with complicated thermal histories*.
- Since potassium is usually added by alteration, the daughterparent ratio and the age might be too low.
- Some uncertainties related to post-formational heating of a rock are overcome in a modification of the K-Ar method that uses the ${}^{40}Ar/{}^{39}Ar$ isotopic ratio.

K-Ar METHOD

- A potassium-bearing sample is split into two fractions:
 - one is analysed for its potassium content,
 - other is fused in a vacuum to release the argon gas.
- The ${}^{40}Ar$ is determined by mixing with a known amount of another isotope ${}^{38}Ar$.
- The amount of the ${}^{36}\!Ar$ present is then determined relative to ${}^{38}\!Ar$ to provide an estimate of the background atmospheric correction.

* It may be assumed that all of the radiogenic ${}^{40}Ar$ now present in a rock has formed and accumulated since the solidification of the rock.

Ar-Ar METHOD

- Introduced by two Geochronologist C. M. Merrihue and G. Turner.
- Better known as ${}^{38}Ar/{}^{39}Ar$ method.
- This method overcomes the *post formational heating alteration* and also the argon complexity by *conversion of the* ${}^{39}K$ in the rock to ${}^{39}Ar$.
- The sample is heated progressively to drive out argon at successively higher temperatures.
- The ${}^{40}Ar/{}^{39}Ar$ isotopic ratio of the argon released at each temperature is determined in a mass spectrometer.
- The age computed for each increment is plotted against the percentage of *Ar* released. This yields an *age spectrum*.

Hypothetical age spectrum and ⁴⁰Ar/³⁹Ar isochron for a sample that has experienced no secondary heating (after Dalrymple, 1991).

Fig a –

If the rock has not been heated since it was formed, the argon increments given out at each heating stage will yield the same age.

Fig b –

measuring the abundance of a nonradiogenic ³⁶Ar *fraction and comparing the isotopic ratios* ⁴⁰Ar/ ³⁶Ar *and* ³⁹Ar/ ³⁶Ar.

In an unheated sample all points fall on the same straight line.

REFERENCES & FOR FURTHER STUDIES

- Lowrie, W., (2007): Fundamentals of Geophysics, Cambridge University Press
- Mason, B. and Moore, C.B., (1991): Introduction to Geochemistry, Wiley Eastern.
- White, W. M., (2015): Geochemistry, John Wiley & Sons, Ltd.