GEOCHEMISTRY

"Radiogenic Isotope Dating System"

$$
" K-A r \text { Scheme" }
$$

```
Shekhar
Assistant Professor
Department of Geology
Patna Science College
Patna University
E-mail: sharan.srk@gmail.com
```


INTRODUCTION

- Each age-dating scheme involves precise measurement of the concentration of an isotope.
- The decay scheme thus selected to obtain the ages which is less than a few half-lives of the radioactive decay.
- If the radioactive decay has advanced too far, the resolution of the method deteriorates.
- Radioactive decay is a statistical process. (*For further detail refer to the radioactivity lecture.)

RADIOGENIC ISOTOPES IN GEOCHEMISTRY

Decay constants and half-lives of some naturally occurring, radioactive isotopes commonly used in geochronology

Parent Isotope	Daughter Isotope	Decay Constant $\left(\mathbf{1 0}^{-10} \boldsymbol{y} \boldsymbol{r}^{-\boldsymbol{}}\right)$	Half-life $(\boldsymbol{G a} \boldsymbol{)}$
${ }^{40} \boldsymbol{K}$	${ }^{40} \boldsymbol{A} \boldsymbol{r}$	5.543	1.28
${ }^{87} \boldsymbol{R} \boldsymbol{b}$	${ }^{87} \boldsymbol{S} \boldsymbol{r}$	0.1420	48.8
${ }^{138} \boldsymbol{L} \boldsymbol{a}$	${ }^{138} \boldsymbol{C} \boldsymbol{e}$	0.0267	259
${ }^{147} \boldsymbol{S} \boldsymbol{m}$	${ }^{143} \boldsymbol{N} \boldsymbol{d}$	0.0654	106
${ }^{176} \boldsymbol{L} \boldsymbol{u}$	${ }^{176} \boldsymbol{H} \boldsymbol{f}$	0.194	36
${ }^{187} \boldsymbol{R} \boldsymbol{e}$	${ }^{187} \boldsymbol{O}$	0.164	42.3
${ }^{232} \boldsymbol{T} \boldsymbol{h}$	${ }^{208} \boldsymbol{P b}$	0.4948	14.01
${ }^{235} \boldsymbol{U}$	${ }^{207} \boldsymbol{P b}$	9.8485	0.704
${ }^{238} \boldsymbol{U}$	${ }^{206} \boldsymbol{P b}$	1.5513	4.468

K-Ar system

- The parent isotope, potassium, is common in rocks and minerals, while the daughter isotope, argon, is an inert gas that does not combine with other elements.
- $\mathrm{K}-\mathrm{Ar}$ method used for dating lavas as young as a few million years to the older one.
- It decays in two different ways:

$$
\begin{aligned}
& { }^{40} \mathrm{~K}_{19} \longrightarrow{ }^{40} \mathrm{Ca}_{20}+\beta^{-} \\
& { }^{40} \mathrm{~K}_{19}+\mathrm{e} \longrightarrow{ }^{40} \mathrm{Ar}_{18}
\end{aligned}
$$

* Decay constant: $\quad \boldsymbol{\lambda}=\boldsymbol{\lambda}_{\boldsymbol{A r}}+\boldsymbol{\lambda}_{\boldsymbol{c a}}$
* β-particle decay is more common than electron capture.
*K-Ar decay scheme is used for age calculation instead of K-Ca decay scheme

The age of the rock is obtained from the equation:

$$
\left({ }^{40} A r\right)_{\mathrm{P}}=\left(\frac{\lambda_{\mathrm{Ar}}}{\lambda_{\mathrm{Ar}}+\lambda_{\mathrm{Ca}}}\right)_{\mathrm{I}}+\left({ }^{40} K\right)_{\mathrm{p}}\left(\mathrm{e}^{\lambda \mathrm{t}}-1\right)
$$

where,
$\left({ }^{40} \mathrm{Ar}\right)_{\mathrm{P}}$-- accumulated amount of the daughter product $\left({ }^{40} K\right)_{p}$-- residual amount of the parent product
$\left(\frac{\lambda_{N}}{\lambda_{A-}+\lambda_{\mathrm{Ca}}}\right)_{\mathrm{I}}$-- fraction of initial Potassium to Argon.
λ - decay constant
t - age of the rock

K-Ar system

- The method works well on young igneous rocks that have not been heated since they formed.
- It cannot be used in sedimentary rocks consisting of the detritus of older rocks.
- Also, unsuccessful in metamorphic rocks with complicated thermal histories.
- Since potassium is usually added by alteration, the daughterparent ratio and the age might be too low.
- Some uncertainties related to post-formational heating of a rock are overcome in a modification of the $\boldsymbol{K}-\boldsymbol{A r}$ method that uses the ${ }^{40} \mathrm{Ar}{ }^{(39} \mathrm{Ar}$ isotopic ratio.

K-Ar METHOD

- A potassium-bearing sample is split into two fractions:
- one is analysed for its potassium content,
- other is fused in a vacuum to release the argon gas.
- The ${ }^{40} \boldsymbol{A r}$ is determined by mixing with a known amount of another isotope ${ }^{38} A r$.
- The amount of the ${ }^{36} \boldsymbol{A r}$ present is then determined relative to ${ }^{38} \boldsymbol{A r}$ to provide an estimate of the background atmospheric correction.
* It may be assumed that all of the radiogenic ${ }^{40} \boldsymbol{A r}$ now present in a rock has formed and accumulated since the solidification of the rock.

Ar-Ar METHOD

- Introduced by two Geochronologist C. M. Merrihue and G. Turner.
- Better known as ${ }^{38} \boldsymbol{A r} \boldsymbol{r}{ }^{39} \boldsymbol{A r}$ method.
- This method overcomes the post formational heating alteration and also the argon complexity by conversion of the ${ }^{39} \boldsymbol{K}$ in the rock to ${ }^{39} \boldsymbol{A r}$.
- The sample is heated progressively to drive out argon at successively higher temperatures.
- The ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ isotopic ratio of the argon released at each temperature is determined in a mass spectrometer.
- The age computed for each increment is plotted against the percentage of $\boldsymbol{A r}$ released. This yields an age spectrum.

Hypothetical age spectrum and ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ isochron for a sample that has experienced no secondary heating (after Dalrymple, 1991).

Fig a-
If the rock has not been heated since it was formed, the argon increments given out at each heating stage will yield the same age.

Fig b-
measuring the abundance of a nonradiogenic ${ }^{36} \mathrm{Ar}$ fraction and comparing the isotopic ratios ${ }^{40} \mathrm{Ar} /{ }^{36} \mathrm{Ar}$ and ${ }^{39} \mathrm{Ar}$ ${ }^{36} \mathrm{Ar}$.
In an unheated sample all points fall on the same straight line.

REFERENCES \& FOR FURTHER STUDIES

- Lowrie, W., (2007): Fundamentals of Geophysics, Cambridge University Press
- Mason, B. and Moore, C.B., (1991): Introduction to Geochemistry, Wiley Eastern.
- White, W. M., (2015): Geochemistry, John Wiley \& Sons, Ltd.

