

Estd. 1917

Photochemistry

Dr Rajneesh Kumar Department of Chemistry Patna University Mob:9431040431 Email: rajneesh.scp@gmail.com

Photochemistry

- 2. Vibrational Relaxation: $k \sim 10^{12}/s$, from high v to low v
- 3. Internal Conversion: to lower electronic state of same multiplicity (k>10¹⁰/s)
 - 4. Radiationless Decay: $S_1 \rightarrow S_0$, no emission, k<10⁶/s

5.Intersystem Crossing: $k \approx 10^6 \sim 10^{10}$ /s, depends on molecules. (carbonyl fast; alkene slow)

- 6. Fluorescence: $S_1 \rightarrow S_0$, with emission. $k \approx 10^6 10^9$.
- 7.Phosphorescene: $T_1 \rightarrow S_0$ with emission. $k \approx 10^{-2} 10^4$
- 8. Triplet Triplet Absorption
- 9.Singlet Singlet Absorption
- 10.Singlet Triplet Absorption

Photophysical Processes

- S₀(ground st.) of H₂C=O :
- $\begin{array}{l} [(1S_{O})^{2}(1S_{C})^{2}(2S_{O})^{2}(\sigma_{C-H})^{2} \ (\sigma_{C-H})^{2} \$
- $S_1(1^{st} exc.state)$: - $[(1S_0)^2(1S_C)^2(2S_0)^2(\sigma_{C-H})^2(\sigma'_{C-H})^2(\sigma'_{C-H})^2(\sigma_{C-O})^2](\pi_{C-O})^2(n_O)(\pi^*_{C-O})$
- $S_2(2^{nd} exc.state)$:

 $- [(1S_{O})^{2}(1S_{C})^{2}(2S_{O})^{2}(\sigma_{C-H})^{2} (\sigma_{C-H})^{2} (\sigma_{C-H})^{2} (\sigma_{C-O})^{2}](\pi_{C-O}) (n_{O})^{2}(\pi_{C-O}^{*})$

UV Absorption and Emission Factors determining

radiative transition:

- Symmetry of electronic state (ini. final state)
- 2. Multiplicity of the spin

 Spin-orbit interaction (allows different spin transition mixing due to the mixing of magnetic moment of e⁻ and the magnetic moment of the nucleus)

> Heavy atom effect: higher rate of intersystem crossing

◆Greater mixing if S and T are closer in energy, example carbonyl cpds.

example carbonyl cpds. 3. Frank-Condon term, determined by overlap of nuclear coordinate of init. and final state

Frank-Condon Principle

- At the instant of excitation, only electrons are reorganized, the heavier nuclei retain the ground state geometry
- The excited state has similar molecular geometry as ground state

Anthrcene

(1): Vib. energy diff. of S₀
(2): (0,0) transition
(3): Vib energy diff. of S₁
(2) /

Fluorescence

geometry quite different from ground state geometry => large Stokes shift (anti-Stokes shift: the fluorescence is at shorter

Photon Intensity (Arbitrary Scale)

Wavenumber, cm⁻¹

Measurement of Absorption

- Beer-Lambert Law: log^{Io} =€c d =A (absorbance) I₀: It incident light I_t: transmitted light €: extinction coefficient c:
 - concentration
 - d: light path length
 - •Quantum yield of emission:

 $\Phi_{f} = \frac{\# of \ photon \ emitted \ from S_{1}}{\# of \ photon \ absorbed}$

Br

Phosphorescence

Much reduced due to diffusional quenching with ground state species or O_2

Observed in fixed matrix, such as liquid N2 temperature or surrounded by a host

In aqueous solution with α -CD

Concentration – Dependent Fluorescence

Intensity Intensity

Excimer formation
 Excimer: A complex
 Excimer: A complex
 Formed between
 Formed

Geometric Requirement of Excimer Formation

• The molecular plane can stack together with interplanar distance less than 3.5 Å.

- n=0 no overlap of ring
- n=1 excimer formation
- n=2 strain of chain

Excimer formation

Partial overlap of ring plane

- Exciplex: complex formed between an excited molecule with a ground state molecule of dissimilar molecule
- A*B ↔ AB* can give exciplex emission or quench emission

Energy Transfer and Electron Transfer Pathways $\mathcal{D}^* + \mathcal{A} \rightarrow \mathcal{D} + \mathcal{A}^*$

- 1) Radiative energy transfer
- $\bullet \quad \mathsf{D}^* \rightarrow \mathsf{D}^+ hv$

• A+ $hv \rightarrow A^*$ The rate depends on

M The quantum yield of emission by $D^* (\Phi_e^{D})$

 \triangle The concentration of (the # of) A in light path

M The light absorbing ability of A (extinction coefficient)

The overlap of emission spectrum of D^* and absorption of A (spectral overlap integral)

2) Förster energy transfer

–Long range (D*-A distance up to 100 Å)

-No radiation involved

-The dipole-dipole interaction of D* and A

•An interaction at a distance via electromagnetic field, induce a dipole oscillation in A by D*.

•Efficient transfer requires a good overlap of emission of D* with absorption of A.

 Collisional energy transfer (Dexter energy transfer): exchange of electron between the donor and acceptor

- The exchange of electron via overlap of electron clouds require physical contact between the interacting partners.
 - Spectral overlap integral also required
 - This process allows triplet state to be generated $D^* + A_0 \rightarrow D_0^{11} + A^*$
 - A short-ranged interaction

Electron Transfer

The photo excited state is a better donor (lower oxid. potential) as well as a better acceptor (lower reductive potential) relative to ground state

• Δ H*+ $hv' = \Delta$ H+	- <i>hv</i> ''
Δ H*- Δ H = + hv '' - hv ' \approx	$a \Delta G^*-\Delta G$
$-(if \Delta S^* \approx \Delta S for ionitial$	zation)
$-\Delta G = 2.303 RTpK$	
$-nK^*-nK = \frac{\Delta G^*-\Delta G}{\Delta G} \approx$	<u>hv"-hv'</u>
2.303RT	2.303 <i>RT</i>

Table 12.3 Acidity constants of ground and excited states. (Except as noted, data are from reference 80.)

Compound	Reaction	$\mathbf{p}\mathbf{K}(\mathbf{S}_{0})$	$\mathbf{p}\boldsymbol{K}\left(\mathbf{S}_{1}\right)$	рК (Т ₁)
Naphthalene ^a	protonation	-4.0	11.7	-2.5
2-Naphthol	deprotonation	9.5 (1)	3.1	7.7 to 8.1
2-Naphthoic acid	deprotonation	4.2 (2	2) 8.2 ^b	4.0 ^c
2-Naphthylamine	protonation	4.1 —	<u>3)</u> →-2.0	3.1 to 3.3

^aVander Donckt, E.; Lietaer, D.; Nasielski, J. Bull. soc. chim. Belges **1970**, 79, 283. ^bKovi, P. J.; Schulman, S. G. Anal. Chim. Acta **1973**, 63, 39. (**1**):more acidic ^cReference 81. (**2**):less acidic

(3):more acidic

When photochem. excited, electron from $HOMO \rightarrow LUMO$, and change the e-density

Bond angle, Dipole moments of Excited state

=0 hv)c==∘

Table 12.4 Physical properties of formaldehyde excited states. (Data from references 89, 90, and 91.)

Property/State	S ₀	$\mathbf{S}_{\mathbf{i}}$	T ₁
Geometry	planar	pyramidal	pyramidal
Δ (nonplanarity)	0°	20°	35°
C = 0 length	1.22 Å	1.32 Å	1.31 Å
v C=0 stretch	1746 cm ⁻¹	1182 cm ⁻¹	1251 cm ⁻¹
<hch< td=""><td>120°</td><td>122°</td><td></td></hch<>	120°	122°	
Dipole moment	2.3 D	1.5 D	1.3 D

LUMO

- $S_0 \rightarrow S_1$ (n- π^*) excited state less polar than the ground state
 - hypsochromic (blue) shift with polar solvent
- $S_0 \rightarrow S_2 (\pi \pi^*)$ excited state more polar than the ground state
 - bathochromic (red) shift with polar solvent

Photochemical Reactions of Carbonyl Compounds

Norrish Type I Cleavage (α - cleavage)

If the S.M. is retrieved, the γ carbon may loose stereochem. (if chiral), so not exactly the same original S.M.

α - β unsaturated ketone

De-conjugated absorb at shorter wave length

Oxetene Formation (Paterno-Buchi Reaction) $\stackrel{*}{\downarrow} + \stackrel{||}{\longrightarrow} \stackrel{\sim}{\downarrow} \stackrel{\bullet}{\longrightarrow} \stackrel{\circ}{\longrightarrow} \stackrel{\circ}{\downarrow}$

Photochemical Reactions of Alkene and Dienes

Isomerization Trans compound has 1. longer absorption $hv \rightarrow C = C$ wavelength $\hat{\pi} \approx \pi \frac{1}{\lambda} = \frac{1}{265} \frac{1}{100} = \frac{1}{100} \frac{1$ the same excited state species higher E => twisted geometry with 90° rotation of p-Cis trans orbital relative to tower c each other λ

A photostationary state will be reached from either side (cis◀ photostationary state; trans◀ photostationary state)

 $\begin{array}{ccc} [C] &= & \underline{\mathcal{E}t} & \underline{kc} \\ \\ \underline{pss} [T & & \mathcal{Ec} & & kt \end{array} \end{array}$

 \mathbf{R}_{c}^{ss} formation constant of cis from the excited twisted state

 k_t =formation constant of trans from the excited twisted state

For cyclopentene, the cis-trans isomerization doesn't occur.

The photochemically allowed reaction by symmetry rule may be only one of many reaction pathways

other mechanism

Thank you