M.Sc Second Semester CC7 Paper

 Physical Chemistry

 Physical Chemistry}

Dr Bina Rani
Univ. Prof. of Chem.
Magadh Mahila College (P.U.)
Patna

Charge Density (Electron)

For a molecular orbital $\Psi_{i}=\sum_{j} C i j 2 p j$ where $2 \mathrm{p}_{\mathrm{j}}=2 \mathrm{p}_{\mathrm{z}}(\mathrm{j})$ where j refers to a specific carbon atom (or its electron). Since $2 p_{z}$ orbitals are orthonormal, the normalization of Ψ_{i} leads to

$$
\int|\Psi \mathrm{i}|^{2} \mathrm{dt}=\sum_{j} C i j^{2} \int\left|2 p_{j}\right|^{2} \mathrm{dt}=1
$$

implies

$$
\sum_{j} C i j^{2}=1
$$

This means Cij^{2} is the fraction of the π-charge on the j -th carbon atom when there is an electron in i-th molecular orbital, Ψ_{i}. The sum of the π-electron charges of the j-the carbon atom on all the molecular orbitals gives the total π-electron charge on the j-th carbon atom and is given by

$$
q_{j}=\sum_{j} n_{i} C i j^{2}
$$

Where n_{i} is the number of electrons (or carbon atoms) in the i-th molecular orbital.
For example in ethene,

$$
\begin{aligned}
\mathrm{E}_{1} & =\alpha+\beta \\
\mathrm{E}_{2}= & \alpha-\beta \\
\mathrm{q}_{1}=2 \mathrm{C}_{11^{2}}= & 2 \times\left(\frac{1}{\sqrt{2}^{2}}\right)=1
\end{aligned}
$$

Similarly $\mathrm{q}_{2}=1$
In case of butadienes,

$$
\begin{aligned}
\mathrm{q}_{1} & =2 \mathrm{C}_{11}{ }^{2}+2 \mathrm{C}_{21}{ }^{2}+0 \mathrm{C}_{31}{ }^{2}+0 \mathrm{OC}_{42}{ }^{2} \\
& =2(0.3717)^{2}+2(0.6015)^{2}=1.000 \\
\mathrm{q}_{2} & =2(0.6015)^{2}+2(0.3217)^{2}=1.00
\end{aligned}
$$

Note that calculation should be carried out with bonding molecular orbitals only

Bond Order

Between two adjacent carbon atoms, say r and s we have the corresponding coefficients C_{ir}, $\mathrm{C}_{\text {is }}$ for the i-th molecular orbitals (Ψ_{i}).

We define π-bond order between two adjacent atoms (r, s) as

$$
\mathrm{Prs}=\sum_{i} n_{i} \mathrm{C}_{i r} . \mathrm{C}_{i s}
$$

Where n_{i} is the number of electrons in the i-th molecular orbital. Since there is also a σ-bond between the two carbon atoms, we define total bond order

$$
P_{r s}^{\text {total }}=1+\operatorname{Prs}=1+\sum_{i} n_{i} \mathrm{C}_{i r} \cdot \mathrm{C}_{i s}
$$

In ethene:

$$
\begin{aligned}
& \mathrm{P}_{12}=2 \mathrm{C}_{11} \mathrm{C}_{12}=2 \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \\
& P_{12}^{\text {total }}=1+1=2
\end{aligned}
$$

In case of butadiene

$$
\begin{aligned}
& \mathrm{P}_{12}=2 \mathrm{C}_{11} . \mathrm{C}_{12}+2 \mathrm{C}_{21} . \mathrm{C}_{22} \\
&=2(0.3717 \times 0.6015)+2(0.6015 \times 0.3717)=0.894 \\
& \\
& \mathrm{P}_{23}=2 \mathrm{C}_{12} . \mathrm{C}_{13}+2 \mathrm{C}_{22} . \mathrm{C}_{23} \\
&=2(0.6015 \times 0.6015)+2(0.3717 \times-0.3717)=0.447 \\
& \\
& \mathrm{P}_{34}=2 \mathrm{C}_{13} . \mathrm{C}_{14}+2 \mathrm{C}_{23} . \mathrm{C}_{24} \\
&=2(0.6015 \times 0.3717)+2(0.3717 \times 0.6015)=0.894
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& P_{12}^{\text {total }}=1+0.894=1.894 \\
& P_{23}^{\text {total }}=1+0.447=1.447
\end{aligned}
$$

