Dr. Dilip Kumar Verma Associate Prof. PG Depth. Of Chemistry, P.U.

SEM-II
Physical Chemistry
Unit-IV

**Huckel Molecular Orbital Theory** 

Applications Of HMO Theory To Benzene System

## Benzene

The HMO wave function for benzene is

$$\psi = c_1\phi_1 + c_2\phi_2 + c_3\phi_3 + c_4\phi_4 + c_5\phi_5 + c_6\phi_6$$

...(9.105)

and the secular equations in terms of x are,



ent in control 
$$c_1x + c_2$$
 and this  $c_1 + c_2x + c_3$   $= 0$ 

$$c_1 + c_2x + c_3 = 0$$

$$c_2 + c_3x + c_4 = 0$$

$$c_3 + c_4x + c_5 = 0$$

$$c_3 + c_4x + c_5 = 0$$

$$c_4 + c_5x + c_6 = 0$$

$$c_5 + c_4x + c_5 = 0$$

$$c_6 + c_1x + c_2x + c_3x + c_4 = 0$$

$$c_7 + c_7x + c_6 = 0$$

$$c_8 + c_9x + c_6 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4 = 0$$

$$c_1x + c_2x + c_3x + c_4x + c_5x + c_6x +$$

 $0 = \left(\frac{1}{2} - \times 0\right) \times 1 + \left(0 \times \frac{1}{2} - \right) \times 1 + \left(\frac{1}{2} \times \frac{1}{2}\right) \times S = \frac{1}{42}$ The corresponding determinant is,

$$P_{1} = 2 \times (\frac{1}{1} \frac{1}{2}) + 0 \times (0 \times \frac{1}{2}) \times (\frac{1}{2} \times \frac{1}{2}) = 0.5$$

$$P_{2} = 2 \times (\frac{1}{1} \frac{1}{2}) + 0 \times (0 \times \frac{1}{2}) \times (\frac{1}{2} \times \frac{1}{2}) = 0.5$$

$$P_{3} = 1.732 \qquad P_{4} = 1.732 \qquad P_{5} = 1.73$$

The determinant can be expanded into the polynomial,

$$x^6 - 6x^4 + 9x^2 - 4 = 0$$
 ....(9.108)

which can be factorised as

The equation leads to the following six roots and correspondingly six energy levels:

| $x_j$      | $E_{f}$                 | j                | -                          |  |
|------------|-------------------------|------------------|----------------------------|--|
| $x_1 = -2$ | $E_1=\alpha+2\beta$     | 1                | → Lowest bonding HMO       |  |
| $x_2 = -1$ | $E_2 = \alpha + \beta$  | 23               | → Doubly degenerate        |  |
| $x_3 = -1$ | $E_3=\alpha+\beta$      | 3)               | bonding HMO's              |  |
| $x_4 = +1$ | $E_4=\alpha-\beta$      | 4 <sub>5</sub> } | → Doubly degenerate        |  |
| $x_5 = +1$ | $E_5 = \alpha - \beta$  | 5)               | antibonding HMO's          |  |
| $x_6 = +2$ | $E_6 = \alpha - 2\beta$ | 6                | → Highest antibonding HMO. |  |
|            |                         |                  |                            |  |

Of these  $E_1$ ,  $E_2$  and  $E_3$  levels correspond to bonding MO's. Each of these bonding MO's can hold two  $\pi$ -electrons with antiparallel spins. The six  $\pi$ -electrons of benzene occupy these three bonding orbitals of low energy (Fig. 9.7). On the other hand,  $E_4$ ,  $E_5$  and  $E_6$  levels correspond to antibonding MO's. However, two of the bonding energy levels ( $E_2$  and  $E_3$ ) and two of the antibonding levels ( $E_4$  and  $E_5$ ) are degenerate.

Total  $\pi$ -electron energy,

$$E_{\pi} = 2(\alpha + 2\beta) + 2(\alpha + \beta) + 2(\alpha + \beta) = 6\alpha + 8\beta$$
 ...(9.110)  
 $\pi$ -bond energy=  $6\alpha + 8\beta - 6\alpha = 8\beta$ 

If we assume that benzene consists of three localised single bonds and three localised double bonds, the energy of the molecule should be the sum of the energies of three  $\pi$ -bonds. The energy of the three ethene units is

$$3(2\alpha + 2\beta) = 6\alpha + 6\beta.$$
 Delocalisation energy=  $6\alpha + 8\beta - 3(2\alpha + 2\beta) = 2\beta$ 

Therefore, Benzene is more stable than three ethylene molecules by an energy of  $2\beta$ .



The molecular orbitals with bonding energies  $E_1$ ,  $E_2$  and  $E_3$  are  $\psi_1$ ,  $\psi_2$  and  $\psi_3$  respectively. Therefore the ground state electronic configuration of the molecule is  $\psi_1^2, \psi_2^2, \psi_3^2$ .

## The HMO Functions:

$$\psi_{1} = \frac{1}{\sqrt{6}} (\phi_{1} + \phi_{2} + \phi_{3} + \phi_{4} + \phi_{5} + \phi_{6})$$

$$\psi_{2} = \frac{1}{2} (\phi_{1} - \phi_{3} - \phi_{4} + \phi_{6})$$
or
$$\psi_{2} = \frac{1}{2} (\phi_{1} + \phi_{2} - \phi_{4} - \phi_{5})$$

$$\psi_{3} = \frac{1}{\sqrt{12}} (\phi_{1} + 2\phi_{2} + \phi_{3} - \phi_{4} - 2\phi_{5} - \phi_{6})$$
or
$$\psi_{3} = \frac{1}{\sqrt{12}} (\phi_{1} - \phi_{2} - 2\phi_{3} - \phi_{4} + \phi_{5} + 2\phi_{6})$$

$$\psi_{4} = \frac{1}{2} (\phi_{1} - \phi_{3} + \phi_{4} - \phi_{6})$$
or
$$\psi_{5} = \frac{1}{\sqrt{12}} (\phi_{1} - 2\phi_{2} + \phi_{3} + \phi_{4} - 2\phi_{5} + \phi_{6})$$

$$\psi_{5} = \frac{1}{\sqrt{12}} (\phi_{1} + \phi_{2} - 2\phi_{3} + \phi_{4} + \phi_{5} - 2\phi_{6})$$

$$\psi_{6} = \frac{1}{\sqrt{6}} (\phi_{1} - \phi_{2} + \phi_{3} - \phi_{4} + \phi_{5} - \phi_{6})$$

Electron Density:

$$q_1 = 2 \times \left(\frac{1}{\sqrt{6}}\right)^2 + 2 \times \left(\frac{1}{2}\right)^2 + 2 \times \left(\frac{1}{\sqrt{12}}\right)^2 = 1.0$$

$$q_2 = q_3 = q_4 = q_5 = q_6 = 1.0$$

Using the coefficients of HMO's, we get Charge Density:

 $q_i = 1.0$ , and  $\xi_i = 1 - q_i = 1 - 1 = 0$ 

Bond Order:

Similarly,

$$P_{12} = 2 \times \left(\frac{1}{\sqrt{6}} \times \frac{1}{\sqrt{6}}\right) + 2 \times \left(\frac{1}{2} \times 0\right) + 2 \times \left(\frac{1}{\sqrt{12}} \times \frac{2}{\sqrt{12}}\right) = \frac{2}{3}$$

$$P_{23} = 2 \times \left(\frac{1}{\sqrt{6}} \times \frac{1}{\sqrt{6}}\right) + 2 \times \left(0 \times -\frac{1}{2}\right) + 2 \times \left(\frac{2}{\sqrt{12}} \times \frac{1}{\sqrt{12}}\right) = \frac{2}{3}$$

Alternatively,

$$P_{12} = 2 \times \left(\frac{1}{\sqrt{6}} \times \frac{1}{\sqrt{6}}\right) + 2 \times \left(\frac{1}{2} \times \frac{1}{2}\right) + 2 \times \left(\frac{1}{\sqrt{12}} \times -\frac{1}{\sqrt{12}}\right) = \frac{2}{3}$$

$$P_{23} = 2 \times \left(\frac{1}{\sqrt{6}} \times \frac{1}{\sqrt{6}}\right) + 2 \times \left(\frac{1}{2} \times 0\right) + 2 \times \left(-\frac{1}{\sqrt{12}} \times -\frac{2}{\sqrt{12}}\right) = \frac{2}{3}$$

Similarly,

$$P_{34} = P_{45} = P_{56} = P_{61} = \frac{2}{3}$$
 rate unibood they distint a superior of i

This shows that (i) all the six C - C bonds in benzene are equivalent, and (ii) the bonds are not true double bonds. The conclusions are supported by experimentally observed bond length (1.39  $A^0$ ) in benzene which is intermediate between that of a single (1.54  $A^0$ ) and a double (1.33  $A^0$ ) bond.

Free Valence:

$$F_1 = 1.732 - (P_{12} + P_{61}) = 1.732 - (\frac{2}{3} + \frac{2}{3}) = 0.40$$

$$F_2 = 1.732 - (P_{12} + P_{23}) = 1.732 - (\frac{2}{3} + \frac{2}{3}) = 0.40$$

It can be easily verified that

$$F_1 = F_2 = F_3 = F_4 = F_5 = F_6 = 0.40$$