

Prof(Dr) Rajneesh Kumar Department of Chemistry
 Patna University
 Mob:9431040431
 Email: rajneesh.scp@gmail.com
 Topic: Azoles

$\operatorname{Prof}(D r)$ RAJNEESH KUMAR
Professor i PG. Dept of chemistry, P.U.
Azoles: Five membered ring compomals conterining two beside in wat ring which one hetero atom is nitrogen and other hetero atom may g be nitrogen, oxygen af sulphing are called azoles. Azoles many be therefore of thrice types
(a) Oxazoles containing nitrogen and oxygen as hater atom.
(b) Pyrazole, containing two nitrogen as hetero atoms
(c) Thiazoles containing nitrogen and sulfur as heterantows.

Hence these azoles may be derived from pyrrole, furan and thiophene by replacing methine $(=\mathrm{CH}-$) group with pyridine type nitrogen $(=\mathrm{N})$) atoms from the different positions. Casually they are 1,2-and 1,3-azoles as given below

 Isoxazole

Imidazole Thiazole Oxazole

1,3-azoles
The 1,2-azoles are less baric then their 1,3-isomend due to direct linking of the two heteroatoms with substantial inductive influence and hence 1,2 -azoles tend to be less micluphitic than 1,3 azole.

Oxazole $\frac{\text { Syrthen }}{\text { the } a y^{2 d}}$

1. By the ay eatheded cyclising detygdration of α-acylaminocarbougl compounds - (Robinson-Gabriel Synthesis)

(-anglaminol ketone are obtained by the Dakin-west reaction by he ating aid anlyghite with α-aminw avid in the presence of proidine.
2 From Isocyamides $\frac{(a)}{\text { under base Tostapethethetisoyanide reats }}$ with aldehydes under base leataing by losing toluenesulfirate gives sxaizoles. Van-Lensensynthesis)

Scholl Kopfsynthesis: Anions desined "from other isougarides can be
acylated, the prodnct spontaneonsly closing to oxazoles

3 From α-Diazocarbomgl compounds- The generation of a carbine from an α-diazocarbongl compound. in the presence of nitrile, results in overall cyeloadolition and the formation if an oxazole she reaction proceeds via vitim jlicide intermediate and then

$$
R_{Y}-C \equiv M \text { hov or } \triangle R_{-} S_{S} \oplus M_{e}
$$

4. From $(\alpha$-augloxy) Ketone- $(\alpha$-auglory) Ketone obtained from (α-halogen) ketone and salts of cerboxyfic acids. on treatment with ammonis form oxazole.

Examine
intermediate
5. Blumbein - Lew synthesis: - Halogen and α-hyeraxyketone undergo cyelocondensation with carboxamides to give onazoles.

First step is 0 -alkgation of the carboxamide and then cyelization via $\mathrm{N} \rightarrow \mathrm{C}=0$ attack followed by elimination of $\mathrm{H}_{2} \mathrm{O}$.
6. From α-Diketonemonooximes: α-Diketore monooximes is obtained form methylene ketone by nitrosation with methyl nitrite in acidic medium which then subjected to condensation with aldetyde in acetic ard saturated with dry HCl . The unstable M -oxide intermediate is formed which are reduced by in or catalytic Hydrogenation to get trisnbstituted oxawle. Here condensation of the oxime with aldehyde involves acid catalyzed formation of a nitrone intermediate which gives N-oxide by cyelisation followed by dehydration.
7. From Propargylic amide: Proparggtic alwhol and amides forms propargylic amide which on sequential action of Ru and Au-catalyst from vrazoles. Amidation-coupling-cyelrisomerisation sequence from propargglamine and arid chloride. also giver o>azole.

8. By Cornforth et. al.

Properties.
Orazole is a colourless, water soluble liquid having boiling point $70^{\circ} \mathrm{C}$ with a smell similar to pyridine The bond $\mathrm{N}-\mathrm{C}_{4}$ is longer than $\mathrm{N}-\mathrm{C}_{2}$ which indicates the delocalization of the π-electrons is affected by the heteroatom. Its dipole moment is $1.5 D$. It is diatripic and aromatic. All ring atoms are $s p^{2}$ hybridised. There are two non-bonding election pairs, one on the o-atom and the other on the M-atom. The π-electron density over ring atoms are

Orazole, therefore, belongs to the family of T-electron exussive leterocyeles. The elutronegetinity of the pyridine like N -atom, however, conses the T-electron density to be low espuinlly on the $C-2$ atom. Electrophilic substitution therefore should vecur in the 5 or 4-position while reaction with nncleopsinile should ocenr

Reaction pyrope elespengighiles affects electophiniz attack at $\mathrm{N}-3$. Reaction with electoptiles
$\frac{5}{5} \frac{3}{1}$ 1. Orazole is weak base $\left(p k_{q}=0.8\right)$ and are
*: protonated by strong and at the N-atom.

2. Orazile reacts with alkye helide to form quateriang prodmet.

3. Apart from electoplilic substitution, oxazole frequently gives addition reactions. The pyridine like N -atom in the vazole impedes electrophiki substitution reactions
(a) Halogenation - It undergoes boromination by NBS or Br_{2} at 5 -porition and if thin is occompied the at the 4-position.

$$
\left\langle{ }_{0}\right)^{N+} \xrightarrow{N B}
$$

(b) Ni
(c) Merenration - 4-substituted oxazole gives mercutation at s-position, 5-subsituted oxawole pives mereunation at 4-poration wnile 4,5+ disubshtuted oxazole gives mereuration at 2 -porition

Reaction with oxidising agent.
The oxazole ring is cleaved by oxidising agents such of KMMO_{4}, chromic acid ur $\mathrm{H}_{2} \mathrm{O}_{2}$ to give arid ord amide

Reaction with melenghilic reagent
orazole cine treated with NH_{3} at 200 orc undergo railerphite attack at the 2 -position and ane transformed into the wrousponding imidazoles.

Metallation
Oxazole are prone to be lithiated at $\mathrm{C}_{2}^{\text {Ht }}$ but if this is already occupied then at $C_{5} 5$. Bunt attempt to trap z-lithioxazole with electropholes fails due to ring opening followed by elimination to prodme the rs-cyeno endate. However in many, case enolate cyclizes back after the c-electropitis attack giving mixtures $F F C_{2}$ and C_{4} substituted oxazoles.

$$
\prod_{0}^{0 \times a z o l e s}
$$

In this electrophilic ring opening, it is possible to lock the electron pair at the axazole nitrogen by complexation with a lewis acid, such as borane. which allow $\mathrm{C}-2$ substituted oxazole on major.

$$
\overbrace{0}^{\mathrm{N}} \xrightarrow[-78^{\circ} \mathrm{C}]{\substack{1 . \mathrm{THF} \text { orange } \\ 2.5-\mathrm{BL}_{2}}}
$$

Reaction with reducing agent
oxazoble is readily reduced usually with ring scission. From the rechuction with complex metal hydride of oxazoles gives acyectic prodmet. Shin has been also obtained by wing catalytic undmgenation, by dissolving metals.

Diels Alder reaction
Oxazole exhibit diene type cheracterishes and undergoes Riels Alder reaction with alkenic and alkynic dienophiles [Homo-oxazole, Lumb-Diendrhile]

RT

The primary adduct of oxaczole are usually too unstable to be isolated and undergoes retro Diels Alder reaction to give furan with elimination of cyanide.

Photochemical reaction.
Oxazoles are generally phrtostable. However 2,5-diphengloxazole in ethanol on irradiation gives mixture vf 3,5-diphemglisoxazole, 4,5-diphengloxazole, the phenanthrooxazole and traces of benzoic acid.

so -isoxazole

4,5-diphengloxarole Plenanthroorazole Oxazole was first prepared by cornforth in 1947. about 100 years after the first synthesis of substituted orazile 1,4,5-tripherylisoxazole reported by Lenin in 1840. oxazolewas not easily s synthesised earlier. Oxazole chemistry was stimulated in the 1940 by the synthesis of penicillin which was presumed to contain the orazsle runless.

Corntorth rearrangement
oxazsles in which the $C-4$ atom is bended to a carbonyl group isomerize on heating. Two substituent change place in this process.

Usage

1. The anti-inflammatory and analgesic action of 2 -diethylamino-4,5-diphengl oxazole.
2. Aryl substitiosted oxazoles ane strongly fluorescent. 4,4-bisoxazol-z-ylstilbene is added to washing soda so that the clothes appear to be writer than white as a result of the blue fluorescence.
3. 2,5-Diphengloxazole is added as antioxidant to hydrantic fluids and high temperature lubricating oils.
