

Compiled By

Dr Rajneesh Kumar Department of Chemistry Patna University Mob:9431040431 Email: <u>rajneesh.scp@gmail.com</u> Topic: Heterocyclic Compounds

Systematic Nomenclature system: (Hantzsch-Widman System)

^a 1H-tautomer shown..

^b 2H-tautomer.

^c 9H-tautomer.

^d 4H-tautomer.

^e 10H-tautomer.

 f Names of these saturated heterocycles are not used in fusion names; for example, compound X is 3,4-dihydro-2H-1,4-benzoxazine, not benzomorpholine.

Naming Heteromonocycles

Prefix (heterotoms, number, positions) + **Stem** (ring size + saturation)

STRUCTURE			
	Element	Valence	Prefix ^a
-	Oxygen	II	Oxa
	Sulfur	II	Thia
	Selenium	II	Selena
	Tellurium	II	Tellura
	Nitrogen	III	Aza
	Phosphorus	III	Phospha
	Arsenic	III	Arsa
	Silicon	IV	Sila
	Germanium	IV	Germa
	Boron	III	Bora
Management and the formation			

Table 11.2 Hantzsch-Widman system: common prefixes

^a The final 'a' is dropped when the prefix is followed by a vowel.

Ring size	Unsaturated ring	Saturated ring
3	irene ^a	irane ^b
4	ete	etane ^b
5	ole	olane ^b
6	ine ^c	inane ^d
7	epine	epane
8	ocine	ocane
9	onine	onane
10	ecine	ecane

Table 11.3 Stems for the Hantzsch–Widman system

^a The stem 'irine' is normally used for three-membered rings which contain nitrogen. ^b The stems 'iridine', 'etidine' and 'olidine' are preferred for saturated rings containing nitrogen.

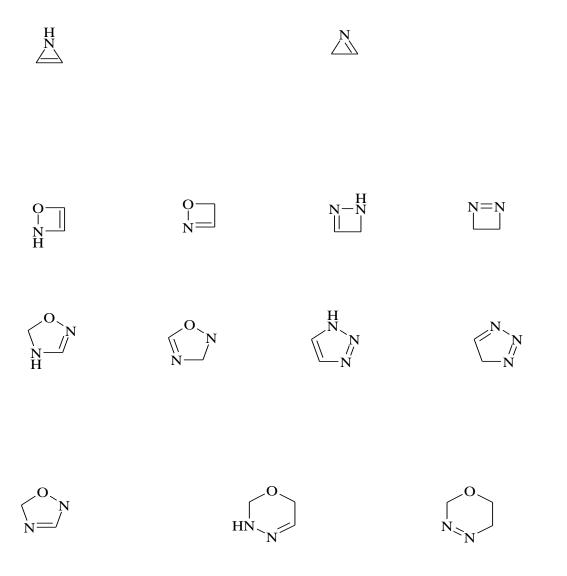
^c The stem 'inine' is used with some phosphorus, arsenic and boron heterocycles: see ref. 5.

^d The stem 'ane' is used if immediately preceded by the prefixes 'ox', 'thi', 'selen' or 'tellur'.



Figure 11.1 Examples of systematically named heterocycles.

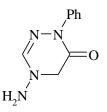
Examples: Name the following compounds

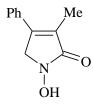


Indication of saturated positions

position (H)
positions (dihydro)
positions (dihydro + H)
posit ions (tetrahydro)
positions (tetrahydro + H)

Saturated positions receive the lower number


Examples:


Compounds containing exocyclic C=O and C=S

1,4-dihydro-1,4-dimethyl-5H-tetrazol-5-thione

4-amino-6-oxo-1-phenyl-1,4,5,6-tetrahydro-1,2,4-triazine 4-amino-1-phenyl-1,4,5,6-tetrahydro-1,2,4-triazin-6-one

2,5-Dihydro-1-hydroxy-3-methyl-4-phenyl-1H-pyrrole-2-one 2,5-Dihydro-1-hydroxy-3-methyl-4-phenylpyrrole-2-(1H)-one

0

3H-pyrazin-2-one Pyrazin-2(3H)-one

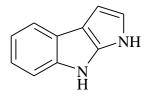
Nomenclature of fused ring systems

Prefix(O) + **Base component**

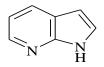
Benzoxazole

Base Component

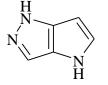
1) One ring only contains N, Choose it


Benzoxazole

2) No, Nitrogen, oxa , thia, aza


Thieno[]furane

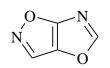
3) One consists of two or more rings, choose it



4) Two rings of different size, choose the larger

pyrrolo[]pyridine

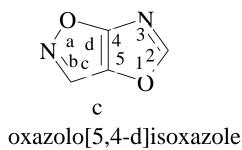
5) Choose the one with more heteroatoms

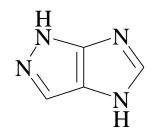

pyrrolo[]pyrrazole

6) Same number of heteroatoms, choose oxa > thia > aza

imidazo[]oxazole

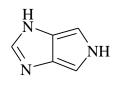
7) Same number of heteroatoms, same oxa, thia, aza, then choose lower numbering

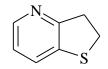


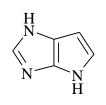

oxazolo[]isoxazole

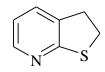
imidazo[]pyrrazole

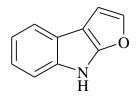
Indicate the fusion by giving letters to the base components and numbers to the prefix (go in the same direction)

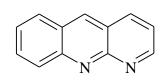

imidazo[

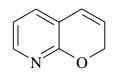

]pyrrazole

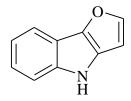

Examples:

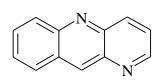


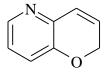


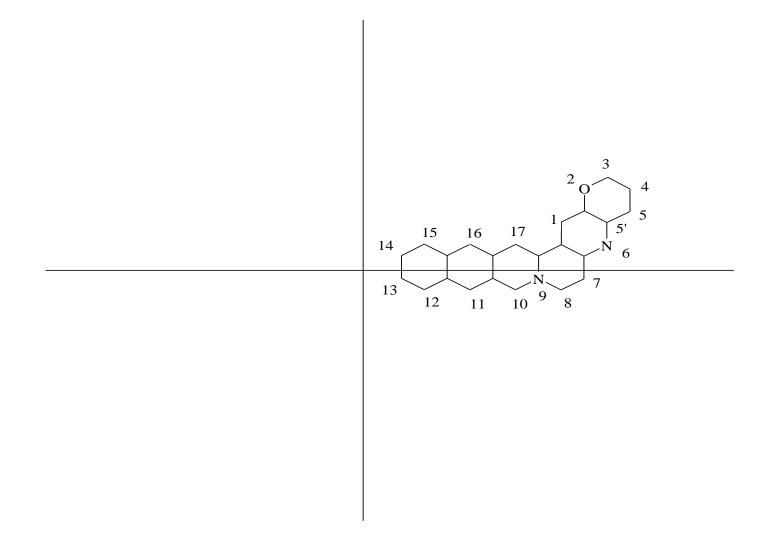


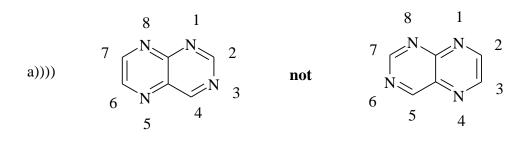


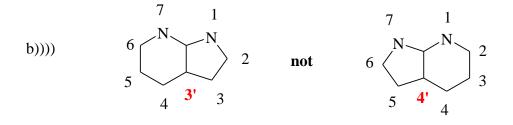


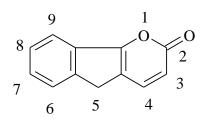


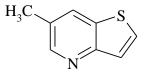


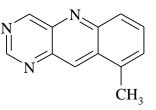


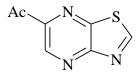



Numbering substituents on fused rings:


- 1) Use rectangular coordinates
- 2) As many rings as possible lie in a horizontal row
- 3) A maximum number of rings are in the upper right quadrant
- 4) The system is numbered in a clockwise direction commencing with that atom which is not engaged in the ring fusion and is furthest to the left:
 - in the uppermost ring or
 - in the ring furthest to the right in the upper row
- 5) C atoms which belong to more than one ring are omitted
- 6) Heteroatoms in such positions are, however, included


- 7) If there are several possible orientations in the coordinate system,
 - a))) the one in which the heteroatoms bear the lowest locants is valid,,,,,,
 - b))) or the one in which the C atom that belongs to more than one ring has the lowest locant


Examples:



indeno[1,2-b]pyran-2(5H)-one

