A study material for M.Sc. Biochemistry (Semester: III) Students on the topic (CC-13; Unit I)

Restriction Enzymes II

Vyomesh Vibhaw

Assistant Professor (Part Time) Department of Biochemistry Patna University Mob. No.:- +91-9708381107, +91-8825217209 E. Mail: vyomesh.vibhaw@gmail.com

Difference

Property	Туре І	Type II	Type III
Protein structure	Bifunctional, 3 subunits	Separate endonuclease and Methylase	Bifunctional, 2 subunits
Recognition site	Asymmetrical (TGAN ₈)	Short sequence palindromic (4-8 bp)	asymmetrical
Cleavage site	>100bp from recognition site	Close to recognition site or same	24-26 bp downstream of recognition site
ATP needed	yes	No	yes
Mg ⁺⁺	yes	yes	yes

Type IIs RE

- Two different enzymes but recognition sequence is asymmetric
- Cleavage occurs on one side of the recognition sequence up to 20 bp away.

Other Restriction system

- homing endonuclease (DNase) derived from introns.
- Asymmetric recognition sequences
- Tolerate some sequences degeneracy with in their recognition sequence

System	Key features
Туре I	One enzyme with different subunits for recognition, cleavage, and methylation. Recognizes and methylates a single sequence but cleaves DNA up to 1000 bp away
Type II	Two different enzymes which both recognize the same target sequence, which is symmetrical. The two enzymes either cleave or modify the recognition sequence
Type III	One enzyme with two different subunits, one for recognition and modification and one for cleavage. Recognizes and methylates same sequence but cleaves 24–26 bp away
Type IIs	Two different enzymes but recognition sequence is asymmetric. Cleavage occurs on one side of recognition sequence up to 20 bp away

Nomenclature of RE

- Nathans and Smith proposed nomenclature system
- Features:
- *Eco*RI
- E=First letter of RE name derived from genus first letter of microbes (written in italics)
- Next two letters derived from species name of microbe from where RE is isolated (written in italics)
- Then strain subscript of bacterium has been taken "R" (non italic)
- When a particular host strain has several different R-M systems these are identified by roman numerals eg. *Hindl, Hindlll*
- R.*HindII*, where R is Restriction
- M.*HindIII,* where M is methylase
- All REs have the general endonuclease, R but in addition carry the system name eg. Endonuclease R. *Hind*III etc.
- Similarly modification enzymes are named Methylase by the system name ex. M. *Hind*III

Derivation of the EcoRI name

Abbreviation	Meaning	Description
E	Escherichia	genus
со	coli	species
R	RY13	strain
l	First identified	order of identification in the bacterium

Style of cleavage

- 2 types: 1. Blunt and 2. Cohesive
- Blunt/flush end: cut both strands of DNA at the same position
- No overhang of nucleotides
- Used to join with any fragment of having blunt end
- Ex. Haelli, Smal, Hpal, Hindli, Haelli, Alul etc

RE	Recognition site	Cleavage product
Haelli	GG CC↓	GG CC
Smal	CCC GGG	CCC GGG

Cohesive/Staggered/Sticky end

 RE leaves overhang of nucleotides after cutting

RE	Recognition site	Cleavage product
<i>Eco</i> RI	5'G AATTC 3' 3'CTTAA G 5'	-5'G AATTC3'- -3'CTTAA G5'-
HindIII	5'A AGCTT 3' 3'T TCGA A 5'	-5'A ACCTT 3'- -3'TTGGA A 5'

ENZYME	ORGANISM	RECOGNITION SEQUENCE*	BLUNT OR STICKY END
EcoRI BamHI	Escherichia coli	GAATTC GGATCC	Sticky
Bg/II	Bacillus amyloliquefaciens Bacillus globigii	AGATCT	Sticky Sticky
Pvul	Proteus vulgaris	CGATCG	Sticky
Pvull	Proteus vulgaris	CAGCTG	Blunt
HindIII	Haemophilus influenzae R _d	AAGCTT	Sticky
Hinfl	Haemophilus influenzae R _f	GANTC	Sticky
Sau3A	Staphylococcus aureus	GATC	Sticky
Alul	Arthrobacter luteus	AGCT	Blunt
Taql	Thermus aquaticus	TCGA	Sticky
Haelll	Haemophilus aegyptius	GGCC	Blunt
Notl	Nocardia otitidis-caviarum	GCGGCCGC	Sticky
Sfil	Streptomyces fimbriatus	GGCCNNNNNGGCC	Sticky

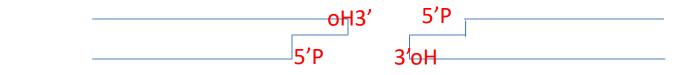
The recognition sequences for some of the most frequently used restriction endonucleases.

*The sequence shown is that of one strand, given in the 5' to 3' direction. "N" indicates any nucleotide. Note that almost all recognition sequences are palindromes: when both strands are considered they read the same in each direction, for example:

5'-GAATTC-3' EcoRI ||||| 3'-CTTAAG-5'

Two conditions

5' overhang: RE cleaves the DNA asymmetrically leaves ssDNA bases. If single strand DNA end with 5' phosphate the enzyme said to produce 5' overhang. Ex.
 BamHI 5' G GATCC 3' BamHI 5'G 5'pGATCC3' 3' C CTAG G 5' 3'CCTAGp5' 3'OHAAG5'



3' overhang: example Sacl

 5' GAGCTC 3'
 Sacl
 5'-GAGCT-3'
 + 5' || || C 3'

 3' CTCGAC 5'
 3' C || ||-5'
 3' TCGAG 5'

5' P recessed and 3' OH exposed

If the ss bases end with a 3'OH, enzyme is said to be leave 3' overhang. Example is *Sac*I

Some terms

- Target sites (Recognition site): The RE cut large DNA molecules into shorter fragments at specific nucleotide sequences referred as recognition or target site.
- Type II RE recognizes and break DNA with in particular sequences of tetra-, penta-, hexa or hepta nucleotides, which have two fold rotational symmetry. For example *Eco*RI cuts at the positions indicated by in arrows in the target sequence
- 5' GAATTC 3'
- *Notl, Pacl* recognizes 8bp sequence (5'GC GGCCGC 3')
- Majority of enzymes uses 6 bp target sites

Ambiguous in recognizing the restriction site or target site Example is *Hind*II $GG(C/T) \oint (G/A)AC$ *Hind*II recognizes the target site with some ambiguity. The RE cut the both either C/ T, or G/A nucleotide in target site. This type of RE has ambiguity in recognizing or cutting the target site

Isoschizomers: More than one RE recognizes the same target site. Example: *Sph*I (CGTAC G) and *Bbu*I(CGTAC G).

Neoschizomers: two different RE recognize the same target sequence but break phosphate group between two different nucleotides. Example is *Sma*I and *Xma*I *Sma*I 5' GGG CCC 3' and *Xma*I (5'G GCCCC 3'). Both recognizes the same target site but produces different cleavage product. So *Xma*I and *Sma*I is neoshcizomers

Hybrid site: two different RE recognizes the two different target site but the resulting protuding ss region is complementary to each other. Example is *Agel* and *Aval*

 Agel
 AJCCGGT produces A | | | | CCGGT and Aval
 C CCGGG produces C | | | | CCGGG

 TGGCC A
 TGGCC | | | A
 G GGCC C
 G GGCC | | | C

- Star activity: Under extreme condition such as high pH, RE are able to cut sequences which are similar but not identical to their defined recognition sequence called SA.
- Ex *Eco*RI N↓AATTN (N is any nucleotide) *Eco*RI cleaves (G↓AATTC)

Some useful information

- Nucleases are enzymes that cut, shorten or degrade the nucleic acid molecules
- *Bal*31 exonuclease removes nucleotides from both strands of DSD.
- Ecoli *exolll* degrade just one strand of a double stranded DNA molecules
- *DNase*I cuts both single and dsDNA molecule
- Alkaline phosphatase: removes phosphate group from 5' end
- **Polynucleotide kinase** adds phosphate group to free 5' termini
- **TTase** (from calf thymus) which adds one or more deoxynucleotides on to the 3' terminus of a DNA molecule
- Acid pyrophophatase removes the cap structure from the mRNA
- **HK alkaline phosphatase** removes the 5'-phosphate group from N.a.
- mRNA guanyl transferase adds 5' cap structure to the mRNA
- Polynucleotide phosphorylase adds ribonucleotides to the 3'OH terminus of mRNA

Acknowledgement and Suggested Readings:

- Gene Cloning and DNA Analysis: An Introduction; Sixth Edition ; T. A. Brown; Wiley – Blackwell Publications
- Principles of Gene Manipulation; Sixth Edition; Sandy B Primrose, Richard M Twyman and Robert W. Old; Wiley – Blackwell Publications
- 3. Biotechnology: Applying the Genetic Revolution; David P. Clark and Nanette J. Pazdernik; Academic Press (Elsevier)
- 4. Restriction Endonucleases; Alfred M. Pingoud; Springer Publications

Thanks